
Software Estimation:
Perfect Practice Makes Perfect

28 CROSSTALK The Journal of Defense Software Engineering June 2002

Software estimation is a difficult prob-
lem. Some have called it a black art.

How does one go about learning this
black art? Actually, it is not as exciting as
it sounds: It takes practice and hard
work. Unless developers get regular prac-
tice doing estimation work, improvement
will be difficult. My son’s karate instruc-
tor shouts his philosophy about practice
at the end of each karate session:
“Practice doesn’t make perfect! Perfect
practice makes perfect!”

Most software developers do some
estimation work, but many are not
trained to do it properly. Regular estima-
tion work with feedback gives the devel-
oper the opportunity to improve his/her
estimation skills. This article presents a
few ideas about how to involve software
developers in the estimation process. The
techniques presented are being used at
the author’s organization with some suc-
cess; result data will be presented later in
the article.

Why Software Projects Are
Poorly Estimated
There are many misconceptions among
software developers about software esti-
mation, which leads them to create poor
estimates. The first thing a software
developer should understand is what an
estimate really is; estimates are probabili-
ty statements. For example, if a develop-
er believes that he/she has an 80 percent
chance of completing a project in nine
months (see Figure 1), but his/her man-
ager says it has to be done in seven
months, what just happened?

By moving the completion date arbi-
trarily, the manager has just reduced the
probability of on-time completion to 25
percent (assuming no other parameters
are changed). This was probably not the
manager’s intention. Most people would
probably feel very uncomfortable if they
knew the project they were responsible
for only had a 25 percent success proba-
bility. They would most likely make a vig-
orous effort to move the completion date
back. By understanding and teaching the
concept of estimates as probabilities,
engineers can make a better defense of
their estimates.

Software engineers should also
understand the difference between target
setting and estimation. Target setting is
when a completion target is set because
of some external dependency, such as a
conference or fiscal year, and the engi-
neer has to figure out how to meet that
target. True estimation must be based on
an analytical foundation with an estima-
tion process that is not open to debate.
The estimation process should be a black
box with inputs of requirements,
resources, etc., which generate the esti-
mate (see Figure 2).

Inputs are independent variables and
the output is a dependent variable. For
example, if the manager wants to short-
en the schedule, he/she must experiment
with different inputs: adding more
resources to the project or reducing the

functionality of the end product. A
defined estimation process is critical to
any organization that desires repeatable,
consistent, and quality estimations.

Another common problem is that the
estimation task itself is often not sched-
uled as part of the project. This leads to
what is known as off-the-cuff or best-guess
estimates (or euphemistically as expert
judgment) that most developers at one
time have done and later regretted. It can
be difficult to justify the importance of
estimation work when there is a lot of
pressure to start working on project
deliverables.

The estimation work at the outset of
a project is really just the tip of the ice-
berg: Creating infrastructure and the cul-
ture to collect and analyze metrics and
other estimation inputs throughout the
project can take a lot of organizational
discipline and work. It is easier to use
personal memory of past projects than
to gather and analyze historical data.
However, creating estimates from per-
sonal memory alone is a proven cause of
cost and schedule overruns [1].

Is a high level of estimation accuracy
even possible early in the project? The
answer is, “It depends” (more about this
later). In a less mature software organiza-
tion, there are usually too many
unknowns at the beginning of a software
project to estimate the following with
high precision and accuracy: Which tech-
nology will be used? How long will it take
to learn it? What if it doesn’t work as
advertised? The list goes on and on. The
author has been involved in many proj-
ects where project milestones are all
mapped out at the beginning of the proj-
ect (before critical decisions have been
made) with pinpoint precision. This false
precision gives the impression that the
estimates are also accurate.1

With so many unknowns, estimating
software can be like peering into thick
fog. One can see things that are near
pretty clearly and estimate their distance.

David Henry
Linux NetworX

Accurate software estimation has long been a headache for software developers. Much of the problem stems from lack of esti-
mation training and practice. This article is the result of the author’s in-the-trenches experimentation with different estima-
tion training methods and is intended to give practical advice to managers or technical leads who wish to initiate a software
estimation process in their organization

10 months

9 months

8 months

7 months

6 months

5 months

4 months

3 months

2 months

1 month

95%

80%

60%

25%

Impossible 0%

Probability
of Completion

Estimated
Completion Time

Figure reprinted with permission from Steve McConnell,
Software Estimation: Demystifying the Black Art, Microsoft Press, 2002. All rights reserved.

Figure 1: Estimates Are Probability Statements

Open Forum

June 2002 www.stsc.hill.af.mil 29

Software Estimation: Perfect Practice Makes Perfect

Objects farther away can only be dimly
seen or not seen at all. How accurate can
distance be estimated when the traveler
has no map and cannot see the goal, but
is relying on memory only? Early esti-
mates should be presented in a way that
expresses this potential inaccuracy. For
example, the author has attended meet-
ings where managers presented all com-
pletion estimates to the day (even long-
term estimates). Once when one of these
estimates was being presented (which
was still over a year away), the question
was asked, “Do you want the project
completed at 10 a.m. or 11 a.m.?” That
manager got the message and now gives
all estimates farther than three months
away in quarter precision, e.g., first quar-
ter of 2002. Treating early estimates for
what they are takes a lot of unnecessary
pressure off the developers. Of course,
estimates can and should be revised as
the project progresses, since the end can
usually be more clearly seen the closer it
gets.

Now to explain the answer given ear-
lier, “It depends.” There are some soft-
ware projects that are estimated with
high precision and accuracy. If an organ-
ization has a tuned estimation process,
metrics gathering, risk management, and
other necessary processes in place, high-
ly accurate estimates are certainly possi-
ble. The fog of project unknowns will
bother this type of organization less. Its
trained engineers have created an organi-
zation-specific map of the software
development terrain and can more easily
navigate around roadblocks. There are
other situations where high accuracy can
be obtained even with a less mature
organization: projects where the engi-
neering team has high familiarity with the
domain and small non-complex projects.

Where to Start
Before proceeding to educate developers
about software estimation, it is instruc-
tive to find out how skilled at estimation
they are. Some people have a knack for
the basic skill of estimating, and others
need more practice. Try taking Jon
Bentley’s estimation quiz [2].2 When tak-
ing the quiz, instruct the engineers to fill
in upper and lower bounds that give one
an 80 percent chance of including the
correct value. If the engineer scores
poorly, this is a chance to remind
him/her to read requirements more care-
fully. The whole point of taking an esti-
mation quiz before getting down to the
nuts and bolts of estimating is to estab-
lish the before state, so the engineer can

track his/her improvement at basic esti-
mation skills.

The logical place for the engineer to
do estimation work is within the scope of
the organization’s estimation process. If
no estimation process exists, get one in
place first. Defining the estimation
process is outside the scope of this
paper, but some online resources are
given later.

Create a Feedback Loop
Developers need to keep track of their
own day-to-day estimates to estimate
accurately in the small. Estimation in the
small is a different problem than estima-
tion in the large, but it is an easier prob-
lem that should be tackled first. Most
engineers will not need to do much esti-
mating in the large unless they are tech-
nical leads or managers, so this paper will
not address its unique problems.

Recently we interviewed a candidate
for a software development position, and
asked him how he liked to be managed.
He replied: “I write embedded code for
devices. Here’s how it works – a sensor
reads a device, providing input to the
program, which then modifies the output
to the device. The sensor repeatedly gets
new values from the device, which allows
the program to guide the device until the
sensor detects values in the correct range.
This means that the device is operating at
the proper level.”

He was describing a feedback loop,
which is how he liked to be managed
(with the manager as the program and
the employee as the device). When man-
aging people, a self-directed feedback
loop is even better, which mostly takes
the manager out of the picture. We have
implemented such an embedded controller in
our organization.

We have created an estimation
spreadsheet that contains estimates for
tasks in the product requirements. (The
spreadsheet is available at <www.burgoyne.
com/~henryd/estimation>.) At the
beginning of each week, the engineer
enters estimates for the weeks’ work and
the actual amount of time the task from
the previous week had taken. This is the
essential idea, and it only takes a few
minutes per week. The spreadsheets are
checked into our source code repository,
so anyone can see others’ spreadsheets.

The spreadsheet contains some sim-
ple formulas to allow the engineer to see
at a glance how close his/her estimates
are to reality. Since it is a spreadsheet, it
can also be easily modified to suit differ-
ent needs, and charts or graphs could be
added. The manager can see who is cur-

rently working on what and how well the
engineer is doing at estimation.

There are certainly other ways of
keeping track of what work is currently
being done, but this solution is light-
weight and does not require expensive or
custom software. The main point is that
the engineer should be teaching himself
to estimate by practicing estimation on a
regular basis and seeing the accuracy and
results of those estimates.

There are a few caveats, however. As
with any metrics gathering, it is best to
explain at the outset that the gathered
information will not be used against the
employee (e.g., in reviews). Otherwise,
engineers may fudge the numbers, ren-
dering the data useless. We have found it
useful to only enter time spent on the
actual task, not including interruptions,
personal time, etc. Because of this, the
estimation spreadsheet does not differen-
tiate between actual and elapsed task time.
Elapsed time is the time between the
start and finish points of a task (includ-
ing interruptions and time spent on other
tasks), whereas actual time is the time
spent only on the task. We felt that
elapsed time was more of a scheduling
issue and did not belong in a tool used
only for estimation purposes, although
other organizations may see this issue
differently. In any case, standardizing the
metric helps simplify the process.

The tasks themselves should be small
tasks of three days or less in size. This
will force the developer to think about
the details of the task, and the estimation
should therefore be more accurate when
broken into smaller pieces. For example,
if a large task estimate (30 days) is under-
estimated by 50 percent, the estimation
error will be larger than if the same task
is broken into 10 smaller three-day tasks.
It is unlikely that all 10 tasks will be
underestimated by 50 percent: some will
be underestimated and some overesti-
mated, which will tend to cancel the esti-
mation errors and produce a better over-
all estimate.

The developer should give three esti-
mates: worst case (pessimistic), best case
(optimistic), and most likely. When asked
to give single-point estimates, many
developers will simply provide best-case

Inputs Outputs

NOT open to debateOpen to debate NOT open to debate

Estimation
Process

Figure reprinted with permission from Steve McConnell,
Software Estimation: Demystifying the Black Art, Microsoft Press, 2002. All rights reserved.

Figure 2: Estimation Process as a Black Box

Open Forum

30 CROSSTALK The Journal of Defense Software Engineering June 2002

estimates. Giving all three estimates will
reveal such tendencies.

Our estimation spreadsheet has been
in use for approximately eight months at
the author’s organization by engineers
with little or no previous formal estima-
tion practice. Before attempting any
work-related estimation, all engineers
involved in the project took the estima-
tion quiz mentioned previously and
scored poorly. During the first month of
use, the average percent differences
between estimates and actual task com-
pletion times were about 75 percent, and
the variance in the group was quite large:
25 percent to 150 percent. By the third
month of use, the average percent differ-
ences for the month had dropped to
about 35 percent, with the greatest
improvements among engineers who had
never before given estimates in such
detail. The average differences had stabi-
lized to about 25 percent after six
months, which may be the best average
results to be obtained by this method.

Comments from the engineers sug-
gest that the most useful feature of this
method is the estimation history con-
tained in the spreadsheet, which assists
the engineer’s memory when creating new
estimates. Other comments suggest that
this process helped the participants prop-
erly size lower- and upper-estimate
bounds (shown as best- and worst-case
estimates in the spreadsheet). This light-
weight method seems to work best as an
introduction to software estimation. If
the organization wishes or needs better
estimation accuracy, this method can be
modified or discarded for a more rigor-
ous method once the software team gains
some estimating skill.

Use Group Estimation
Processes
When making project estimates, get
everyone’s head into the game by using
group estimation techniques. Wide band
Delphi is a popular formal technique [3].
For those who prefer less formal meth-
ods, estimates can be made separately by
members of the group and then aver-
aged. This tends to have a conservative
effect on the estimate. The wide band
Delphi technique is good for groups with
strong personalities because of its anony-
mous estimations. If strong personalities
are not a problem, try reaching group
consensus, but do not vote to overrule
someone who may have a valid point.

We use another spreadsheet to aid our
group estimation process. By first decom-
posing our project by requirement into

modules/classes, each engineer separately
estimates the size of each module in lines
of code (LOC). In order to estimate size,
we use estimation by analogy. For exam-
ple, on a past project five new forms were
to be added to the graphical user inter-
face. By counting the LOC per form from
the most recent project, it was fairly easy
to compare new forms with previously
built forms and estimate how many LOC
the new forms would contain. After esti-
mating separately we met, and our esti-
mates were surprisingly similar. We dis-
cussed differences, which were mostly
different assumptions about the require-
ments. We found this an effective way to
create consensus that leads to a sense of
estimation buy-in among the team.

Lessons Learned
The following lessons learned are sug-
gested for best results:
• Do not rush estimates. Take the time

to define and use a formal estimation
process.

• Integrate regular estimation work into
organizational processes.

• Use group estimation techniques,
allowing team members to learn esti-
mation techniques from one another.

• Gather estimation measurements and
use them in future estimation efforts.

• Avoid off-the-cuff estimates. Managers
should not be tempted to demand
these types of estimates. Developers
should resist giving an estimate until a
detailed analysis of the problem has
been made.

References
1. Lederer, A., and J. Prasad. “Nine

Management Guidelines for Better
Cost Estimation.” Communications
of the ACM Feb. 1992: 34-49.

2. Bently, Jon. Programming Pearls 2nd
Ed., appendix 2. Addison-Wesley,
2000.

3. Wiegers, Carl. “Stop Promising
Miracles.” Software Development
Feb. 2000.

Notes
1. For a good discussion of the differ-

ence between accuracy and precision,
see Steve McConnell’s “Rapid
Development,” Microsoft Press, 1996:
173.

2. The estimation quiz is available online
at <www.cs.bell-labs.com/cm/cs/
pearls/quiz.html>.

Free Estimation Software
• Construx Estimate 2.0. A user-friend-

ly tool that combines several estima-

tion methods. <www.construx.com/
estimate>.

• COCOMO. Requires knowledge of
COCOMO II. <http://sunset.usc.
edu/research/cocomoii>.

• Cosmos. Requires knowledge of
COCOMO II. <www-cs.etsu.edu/
softeng>.

• SizeCost. A wizard-oriented tool for
the beginner estimator. <http://
members.tripod.com/~djelovic/
sizecost.htm>.

• SoftEst. A full-featured COCOMO II
implementation. <http://sepo.sparwar.
navy.mil/estimation.htm>.

Author’s Note
The author is not affiliated with any of
the estimation tools noted above. There
are of course many excellent estimation
tools that can be purchased, but for an
organization/developer just starting to
work with estimation software, it may be
easier to check out some of the simpler
free tools first.

The estimation process should be tai-
lored to fit the organization. There are
some excellent estimation processes avail-
able publicly, including “Manager’s
Handbook for Software Development,”
Revision 1 (See section 3: Cost
Estimating, Scheduling, and Staffing). It
is available online at <http://sel.gsfc.
nasa.gov/website/documents/docs/
84-101.pdf>.

About the Author

David Henry is direc-
tor of Software Engi-
neering at Linux
NetworX, a cluster
computing company.
He is also a principal of

Synergy Software, a consulting firm,
and occasionally teaches programming
classes at Columbia College in Salt
Lake. Henry has nine years of industry
experience in software development.
He has a bachelor’s degree in comput-
er science from Brigham Young
University and is completing a master’s
degree in computer science at
Colorado State University.

Linux NetworX
8689 South 700 West
Sandy, UT 84070
Phone: (801) 562-1010
Fax: (801) 568-1010
E-mail: dhenry@lnxi.com

